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ABSTRACT
In this paper a mathematical analysis based on the Complex Continuous Wavelet Transform over different
theoretical signals is presented. The mathematical relationships between the Complex Continuous Wavelet
Transform, the Hilbert Transform and complex filter banks are presented in order to obtain useful filter bank
design parameters. The mathematical analysis of three different signals is presented: a pure cosine, a sum
of cosines and a signal with frequency variations. The obtained theoretical results allow us to define a new
algorithm to obtain an additive model of the input signal.

1. INTRODUCTION

The Complex Continuous Wavelet Transform was
firstly introduced and applied to audio signals by
Konland-Martinet et al. [1], [2], [3] and [4]. In recent
years Carmona et al. [5] and [6] have developed new
improvements. This work is mainly inspired in these
ones.

The Complex Continuous Wavelet Transform
(CCWT) of a signal f(t) can be defined as follows:

Wf (s, k) =
∫ ∞

−∞
f(t)

1√
s
ψ∗

(
t− k

s

)
dt (1)

Following Kronland-Martinet’s et al. work [1] the
mother wavelet we have used in this work is the com-
plex Morlet’s wavelet, which can be written as:

ψ(t) = Ce
−t2

2σ2

(
ejω0t − e

ω2
0
2

)
≈ Ce

−t2

2σ2 ejω0t (2)

Here ω0 and σ are control parameters, the central
frequency and the filter width, respectively. Indeed,
in the frequency domain, Morlet’s wavelet is a typ-
ical bandpass filter. As shown in Mallat’s work [7]
this filter applied to equation 1 give us a family of
filters (a filter bank) by its time-shifting and its dila-
tion (or contraction) in frequency. Morlet’s wavelet
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is presented in figure 1. For more information about
Wavelet Analysis and Morlet’s wavelet see [8].

Fig. 1: Representation in time and frequency domain
of the Morlet’s Analyzing Wavelet, if C = 1, ω0 = 5
and σ = 1.

The whole information of f(t) is inside the wavelet
coefficients Wf (s, k) obtained using equation 1. In
this case, due to the complex nature of the mother
wavelet they can be studied in terms of modulus
and phase. But not all the information contained in
the complex coefficients is necessary to appropriately
analyze (and synthesize) the signal. As Kronland-
Martinet et al and Carmona et al showed in [2], [5]
and [6], the essential contribution to 1 is located
around the points of the time-frequency half-plane
where the modulus of such coefficients is maximum,
the so called ridge of the transform. The ridge can
be obtained by means of the stationary phase argu-
ment method, and the wavelet coefficients are only
calculated in that set of points, obtaining the skele-
ton of the transform. The obtained results allow
the reconstruction of the original signal with only a
penalty function that can be reduced to a minimal
noisy background. A different approach is made in
this work. Here, the wavelet coefficients are firstly
obtained, then the maxima points are located in the
time-frequency half-plane and finally the phase of
the coefficients on those points is calculated.

Let’s see now a brief summary about the Hilbert
Transform, the analytic signal and their relation-
ships with the CCWT.

Let f(t) be the signal to analyze. A general expres-
sion to refer such a signal is:

f(t) = A(t) cos(φ(t)) (3)

For a given signal f(t), expression 3 is far from being
unique, but there is a pair of functions Af (t) ≥ 0
and φf (t) ∈ [0, 2π] called the canonical pair of f(t).
The canonical pair can be obtained computing the
analytic signal related to f(t) by:

Zf (t) = f(t) + jF (t) ≈ A(t)ejφ(t) (4)

Where F (t) is the HT of f(t). This result is known
as the Bedrosian’s Theorem. Morlet’s wavelet can
be also seen as an analytic filter obtained from a
real filter g(t) defined as:

g(t) = Ce
−t2

2σ2 cos(ω0t) (5)

Equation 1 can be seen as the temporal convolution
between f(t) and the analytic filter ψ(t) or similarly
as the convolution of the analytic signal and the real
bandpass filter. Following the definition of the HT
(see for example [9] and [10]) it can be obtained that:

Wf (s, k) =

 2g(ω)f(ω) if ω > 0
g(0)f(0) if ω = 0
0 if ω < 0

(6)

In equation 6 f(ω) and g(ω) are the Fourier Trans-
form of f(t) and g(t), respectively. Equation 6 serve
us to implement an FFT based efficient algorithm to
compute the CCWT.

2. PRACTICAL LIMITS

If we want to properly analyze a signal, we must im-
pose conditions to the time duration and bandwidth
of the signal and the filter used to analyze it. These
conditions, reflected in a relation between the con-
trol parameters ω0 and σ, represent a practical limit
for the analysis, and are mathematically and numer-
ically defined in [11]. This limit can be expressed as:

BT > 5 (7)

where B is a measure of the bandwidth and T a
measure of time duration. Appliyng 7 to our filter-
bank it follows that the product σ2ω2

0 has to be large
enough, or numerically:

σ2ω2
0 > 25 (8)

AES 118th Convention, Barcelona, Spain, 2005 May 28–31

Page 2 of 6



Beltran AND Ponce de Leon Complex Bandpass Filter Banks

This condition impose a practical limit to the defini-
tion of our filter bank control parameters and should
be used properly in the implemented algorithm.

Another important aspect to be taken into account
is the role played in equation 2 by the normaliza-
tion constant C. It is usually chosen to normalize
the filter energy, but in this work a normalization
constant depending of the in signal is chosen. With
this method the modulus of Wf (s, k) can be directly
the instant amplitude of f(t) and its phase the sig-
nal’s instant phase.

3. THE AM CASE

3.1. The simplest case: A pure cosine

Let’s suppose that the signal is a simple cosine func-
tion with constant amplitude A1 and angular fre-
quency ω1:

f(t) = A1 cos(ω1t) (9)

If we take the normalization constant as:

C =

√
2
π

1
sσ
, (10)

and solving the Gaussian integral that appears in
equation 1, the obtained wavelet coefficients are:

c(s, k) = 2A1e
−σ2ω2

1s2

2 e−
σ2ω2

0
2{

cosh(σ2ω0ω1s) cos(ω1k)

+j sinh(σ2ω0ω1s) sin(ω1k)
} (11)

It is possible to analyze equation 11 in terms of mod-
ulus and phase. The modulus of equation 11 can be
expressed as:

‖c(s, k)‖2 = 2A2
1e
−σ2ω2

1s2
e−σ2ω2

0{
cosh(2σ2ω0ω1s) + cos(2ω1k)

} (12)

It can be deduced that equation 12 has a maximum
located at s = ω0/ω1 when σ2ω2

0 is large enough,
condition that carries out numerically if 8 is true.
This is the same result offered by applying the sta-
tionary phase argument method developed in [2].

The maximum value of 12 is exactly A2
1 due to the

chosen value of C. Under these circumstances its
achieved directly that the modulus of the coefficients
is exactly the amplitude of the original signal, with
no dependence of the scale factor. A graphical view
of equation 12 is shown in figure 2.

Fig. 2: Square modulus of the wavelet coefficients for
a pure cosine. A1 = 1 and ω1 = 5 kHz. Observe that
the maximum is exactly located at the appropriate
frequency and its value is 1.

The phase of equation 11 can be expressed as:

Φ(s, k) = arctan[tanh(σ2ω0ω1s) tan(ω1k)] (13)

If s = ω0/ω1 and equation 8 is true, the temporal
partial derivative of equation 13, that is the instan-
taneous angular frequency, is:

∂[Φ(s, k)]
∂k

= ω1 (14)

So, the amplitude and the phase of the original signal
are perfectly recovered.

3.2. The sum of n pure cosines

Let’s suppose that the analyzing signal is made up of
a sum of n cosines, each one with constant amplitude
Aα and pure frequency ωα.

f(t) =
n∑

α=1

Aα cos(ωαt) (15)
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Proceeding as in the previous case, this time its nec-
essary to calculate n Gaussian integrals. The com-
plex wavelet coefficients are:

c(s, k) =
n∑

α=1

2Aαe
−σ2ω2

αs2

2 e
σ2ω2

0
2

{
cosh(σ2ω0ωαs) cos(ωαk)

+j sinh(σ2ω0ωαs) sin(ωαk)
} (16)

As made before, it can be obtained the modulus and
phase of the wavelet coefficients.

‖c(s, k)‖2 = 2e−σ2ω2
0

{ n∑
α=1

2A2
αe
−σ2ω2

αs2

[
cosh(2σ2ω0ωαs) + cos(2ωαk)

]
+

n∑
α6=β=1

AαAβe
−

σ2(ω2
α+ω2

β)s2

2

[
cosh[σ2ω0(ωα + ωβ)s] cos[(ωα − ωβ)k]+

cosh[σ2ω0(ωα − ωβ)] cos[(ωα + ωβ)k]
]}

(17)

Φ(s, k) =

arctan

n∑
α=1

Aαe
−σ2ω2

αs2

2 sinh(σ2ω0ωαs) sin(ωαk)

n∑
α=1

Aαe
−σ2ω2

αs2

2 cosh(σ2ω0ωαs) cos(ωαk)

(18)

The modulus and phase behavior is similar as it was
shown in the upper paragraphs. The exact shape of
equation 17 is shown in figures 3 and 4, with two
different original signals composed by two and three
cosine waves, respectively.

Expressions given in equations 17 and 18 require a
more detailed explanation. It can be shown that 17
have maxima located exactly over every scale factor
s = sα = ω0/ωα. In these points, square modulus
is exactly A2

α and instant angular frequency of 18 is
exactly ωα. But if the frequencies involved are closer

Fig. 3: Two cosines, with A1 = 1, ω1 = 3 kHz,
A2 = 0.5 and ω2 = 8 kHz. Observe the maxima
locations at the right frequency and their correct
value.

Fig. 4: Three cosines, with A1 = 0.5, ω1 = 3 kHz,
A2 = 1 and ω2 = 5 kHz, A3 =

√
0.5, and ω3 = 10

kHz.

enough, there start to increase some intermodulation
terms that alter the shape of the square modulus, as
can be seen in figure 5.

The mathematical analysis made up to now give us
some conclusions. If the analyzing signal is made
up of a sum of cosines and locating the maxima of
the modulus of the wavelet complex coefficients with
the proper normalization constant we can obtain the
correct amplitude and phase values of the original
signal. When the sinusoids are close enough some
intermodulation terms appear, and to resolve prop-
erly them the filter bank width should be narrowed.
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Fig. 5: Three cosines, with A1 = 0.5, ω1 = 3 kHz,
A2 =

√
0.5 and ω2 = 8 kHz, A3 = 1, and ω3 =

10 kHz. Observe in this case the intermodulation
terms.

4. THE FM CASE

Let’s suppose now that f(t) has a more or less com-
plicated modulation frequency law. Due to the pos-
sibility of performing a mathematical analytic anal-
ysis a quadratic law has been chosen. Let the ana-
lyzing signal be:

f(t) = A1 cos(at2 + bt+ c) (19)

Calculating again the Gaussian integral of equation
1 we can obtain the wavelet coefficients and, then,
their modulus and phase:

‖c(s, k)‖2 =
C2A2

1

2
2πσ2s2√

1 + 4a2σ4s4
e−2ξ(s,k)

{cosh[2u(s, k)] + cos[2ν(s, k)]}
(20)

Φ(s, k) = arctan {tanh[u(s, k)] tan[ν(s, k)]} , (21)

where functions ξ, u and ν can be expressed as:

ξ(s, k) =

4k2a2σ2s2 + (ω0 + s2b2)σ2 + 4kabs2σ2

1 + 4a2σ4s4

(22)

u(s, k) =
σ2ω0s(2ak + b)

1 + 4a2σ4s4
(23)

ν(s, k) =

c(1 + 4a2σ4s4) + ak2 − (ω2
0 + s2b2)σ4s2a+ kb

1 + 4a2σ4s4
+

arctan(2aσ2s2)
2

(24)

Taking a = 0 and c = 0 it can be seen that the
examples studied in the previous section are only
particular cases of this one. If the normalization
constant is:

C =

√
2(1 + 4a2σ4s4)1/2

πσ2s2
(25)

when the scale is:

s = sk =
ω0

2ak + b
, (26)

it is obtained that the maximum of the modulus of
the wavelet coefficients is:

‖c(s, k)‖2 = A2
1, (27)

and the phase

φ(s, k) = ak2 + bk + c (28)

The evolution across scales of the modulus of the
wavelet coefficients is depicted in figure 6.

Fig. 6: FM signal with parameters A1=1, a=62500,
b=5000, c=20. Observe the frequency modulation
law.
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This analysis make clear that its not enough to lo-
cate the maximum of the module at some constant
scale but its necessary to follow the location of the
maximum in time and frequency. In the case of a
quadratic frequency dependence the path is defined
by equation 26. This is the same result that the one
obtained in Kronland-Martinet’s et al. work using
the stationary phase argument.

5. CONCLUSIONS
In this work the main basis for the development of
a wavelet based signal analysis algorithm are set-
tled. The computing algorithm has been clarified in
terms of an FFT implementation looking at the re-
lationships between the Hilbert Transform and the
Complex Continuous Wavelet Transform. The rela-
tionships between the control parameters of the filter
bank are also expressed.

Analyzing simple cosine signals we have defined the
normalization constant needed to obtain physical
meaning results. In these simple signals we obtain
the correct amplitudes and phases of the original
signals looking at the points in which the modulus
of the transform coefficients have a maximum. We
have obtained a correct amplitude and phase rep-
resentation of a frequency dependent signal follow-
ing the maxima of the modulus of the transform in
the time-frequency half-plane. The analysis of this
frequency dependent signal shows us that the devel-
oped algorithm should include, a priori, some signal-
dependent normalization constant.

The results obtained in this work will serve us to de-
velop a signal analysis algorithm that will describe
an audio signal in terms of its time-dependent ampli-
tude and phase constituent partials, like in a general
additive synthesis model.
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